

Catalysis Today 64 (2001) 227-231



# General expression for primary characterization of catalyst activity using TAP pulse response experiment

G.S. Yablonsky<sup>a,1</sup>, S.O. Shekhtman<sup>a</sup>, P. Phanawadee<sup>b,\*</sup>, J.T. Gleaves<sup>a</sup>

a Department of Chemical Engineering, Washington University, Campus Box 1198, One Brookings Drive, St. Louis, MO 63130, USA
b Department of Chemical Engineering, Kasetsart University, Bangkok 10900, Thailand

#### **Abstract**

A general expression for primary catalyst characterization using TAP pulse response data has been obtained for porous and non-porous catalysts, and for one- and two-step irreversible catalytic reactions. Using this expression or the corresponding nomogram, the apparent kinetic parameter can be obtained. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Kinetics; Catalysis; TAP pulse response technique

## 1. Introduction

Temporal analysis of product (TAP) Knudsen pulse response experiments are being increasingly used in a variety of laboratories to characterize non-porous and porous catalysts. A TAP experiment is performed by injecting a narrow gas pulse of "reactant molecules" into an evacuated microreactor containing a solid sample usually in particle form. The observed characteristic in a TAP experiment is the time-dependent gas flow F(t) (mol/s or molec/s) that escapes from the exit of the microreactor.

The simplest TAP microreactor configuration is the one-zone reactor which is uniformly packed with particles, and uniformly heated over its entire length. An extensive theory for the one-zone reactor has been developed and discussed in detail [1,2]. In practice,

*E-mail addresses*: gy@wuche1.wustl.edu (G.S. Yablonsky), fengphi@nontri.ku.ac.th (P. Phanawadee).

it is difficult to obtain temperature uniformity at high temperatures in a one-zone reactor, and it is now more common to use a reactor configuration in which the catalyst zone is sandwiched between two inert zones. The main advantage of a "three-zone" reactor is that the catalyst zone can be easily maintained in an isothermal condition. Theoretical analysis of a three-zone model is difficult, however, and currently, curve-fitting is the method used to describe experimental data.

Recently, we described a new TAP reactor configuration called a "thin-zone" TAP reactor, and demonstrated its application to irreversible adsorption/reaction and reversible adsorption [3]. In a thin-zone reactor, concentration gradients across the catalyst bed can be neglected, and diffusion and chemical reaction can be separated.

The thin- and one-zone TAP reactors can be viewed as special (extreme) cases of a three-zone TAP reactor. In this note, we present a general theoretical relation for a three-zone reactor that also describes the one-and thin-zone reactors to characterize both non-porous and porous catalysts.

<sup>\*</sup> Corresponding author.

<sup>&</sup>lt;sup>1</sup> Fax: +1-314-935-7211.

| Nomenci | ature |
|---------|-------|
|         |       |
|         |       |

 $A_{\rm r}$  cross-sectional area of the

reactor (cm<sup>2</sup>)

 $C_{\rm g}$  gaseous concentration in the

interparticle space (mol/cm<sup>3</sup>) gaseous concentration in the

porous space (mol/cm<sup>3</sup>)

 $D_{\rm g,cat}$ 

 $C_{p}$ 

and  $D_{\rm g,in}$  effective Knudsen diffusivities of

gas in the interparticle space in the catalyst and inert zones (cm<sup>2</sup>/s),

respectively

D<sub>p</sub> effective Knudsen diffusivity of

gases in the porous space (cm<sup>2</sup>/s)

F(t) gas flow time dependency (mol/s)

or (molec/s)

J gaseous flow from interparticle

space to the pores per unit of reactor

volume (mol/cm<sup>3</sup> s)

 $k_{\rm ads}$  apparent first-step adsorption

constant (1/s)

 $k_{\rm app}$  apparent kinetic parameter (1/s),

(activity)

 $k_{\text{des}}$  apparent first-step desorption

constant (1/s)

 $k_{\text{reac}}$  apparent second-step reaction

constant (1/s)

L length of the reactor (cm)

 $l_{\text{cat}}$  and  $l_3$  lengths of the catalyst and third

inert zones (cm), respectively

N number of moles of gas in a single

inlet pulse

t time (s)

Term

 $_{kin}(C_g)$  first-order kinetic term (1/s)

(see Table 1 for detail)

X conversion

x reactor axial coordinate (cm)

Greek symbols

α reactor parameter related to the geometry and transport properties

 $\varepsilon$  fractional voidage in the packed bed

 $\theta$  transformed surface concentration

 $(\text{mol/cm}^3)$ 

 $\sigma$  surface area of pores on the catalyst surface per unit volume of catalyst (cm<sup>-1</sup>)

 $\psi$  parameter related to interplay of diffusion and chemical reaction

## 2. Primary characterization of catalyst activity

Primary characterization of catalyst activity should satisfy the following experimental and theoretical requirements:

- 1. insignificant change of the chemical composition and structure of the catalyst during the experiment (this requirement is realized in a TAP "state defining" experiment [1]);
- 2. assumption of first-order reaction;
- general analytical expression that relates catalyst activity and observed characteristics (e.g. conversion).

The primary characterization of catalyst activity can be considered as an important first step in a methodology we call interrogative kinetics [1]. The goal of this paper is to present a general expression that can be used for the primary characterization of catalytic activity using TAP data from any of the above mentioned reactors.

## 3. Model

The general diffusion-reaction model for a TAP three-zone reactor can be represented as follows:

$$\varepsilon \frac{\partial C_{g}}{\partial t} = D_{g,\text{cat}} \frac{\partial^{2} C_{g}}{\partial x^{2}} - \text{Term}_{\text{kin}}(C_{g})$$
(in the catalyst zone) (1)

$$\varepsilon \frac{\partial C_{g}}{\partial t} = D_{g, \text{in}} \frac{\partial^{2} C_{g}}{\partial x^{2}} \quad \text{(in the inert zones)}$$
 (2)

where t is the time (s), x the reactor axial coordinate (cm),  $C_g$  the gaseous concentration in the interparticle space (mol/cm<sup>3</sup>),  $D_{g,cat}$  and  $D_{g,in}$  the effective Knudsen diffusivities of gas in the interparticle space in the catalyst and inert zones (cm<sup>2</sup>/s), respectively, and  $\varepsilon$  the fractional voidage in the packed bed. Term<sub>kin</sub>( $C_g$ )

Table 1 Mechanisms, kinetic terms and apparent constants for different processes in a TAP experiment

| Catalyst                                                                       | Non-porous                                    | Non-porous                                                                                                                                                                                          | Porous                                                                                                                 |
|--------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Process                                                                        | Irreversible adsorption or reaction, one-step | Irreversible reaction, two-step                                                                                                                                                                     | Irreversible adsorption/reaction, one-step                                                                             |
| Mechanism                                                                      | $A + Z \xrightarrow{k_{app}} AZ$              | $A + Z \xrightarrow{k_{ads}} AZ, AZ \xrightarrow{k_{reac}} B + Z$                                                                                                                                   | Diffusion into pores $A + Z \xrightarrow{k_{ads}} AZ$                                                                  |
| Kinetic term, $\operatorname{Term}_{\operatorname{kin}}(C_{\operatorname{g}})$ | $k_{ m app} C_{ m g}$                         | $k_{\rm ads} C_{\rm g} - k_{\rm des} \theta$ , $\theta$ is given by $\frac{\partial \theta}{\partial t} = k_{\rm ads} C_{\rm g} - (k_{\rm des} + k_{\rm reac}) \theta$ , see Appendix A for details | $J(C_g)$ , flow from interparticle space into the pores, see Appendix B for details                                    |
| Apparent constant, $k_{app}$                                                   | $k_{ m app}$                                  | $\frac{k_{\rm ads}k_{\rm reac}}{k_{\rm reac}+k_{\rm des}}$                                                                                                                                          | $rac{1-arepsilon}{arepsilon}\sigma\sqrt{k_{ m ads}D_{ m p}}	anh\left(L_{ m p}\sqrt{rac{k_{ m ads}}{D_{ m p}}} ight)$ |

is the first-order kinetic term (1/s). The explicit form of this term for different cases is given in Table 1.

The TAP initial and boundary conditions are given by

Initial condition: 
$$t = 0 \rightarrow C_g = 0$$
 (3)

Boundary conditions : 
$$x = 0 \rightarrow \frac{\partial C_g}{\partial x}$$
  
=  $-2\frac{N}{D_{g,in}A_r}\delta(t)$ ,  
 $x = L \rightarrow C_g = 0$ , (4)

where N is the number of moles of gas in a single inlet pulse, L the length of the reactor (cm), and  $A_{\rm r}$  the cross-sectional area of the reactor (cm<sup>2</sup>). Standard conditions for insuring continuity of concentration and flow between the inert zones and the catalyst zone were applied.

## 4. Results

Eqs. (1) and (2) were solved using the Laplace transformation method, and a general analytical expression for an irreversible catalytic processes on non-porous and porous materials for a three-zone TAP reactor was obtained. The expression is given by

$$1 - X = \frac{1}{\cosh(\Psi) + \alpha \Psi \sinh(\Psi)},$$

$$\Psi = \sqrt{\varepsilon \frac{l_{\text{cat}}^2}{D_{\text{g,cat}} k_{\text{app}}}}, \alpha = \frac{D_{\text{g,cat}} l_3}{D_{\text{g,in}} l_{\text{cat}}}$$
(5)

where X is the conversion,  $l_{\rm cat}$  and  $l_3$  the lengths of the catalyst and third inert zones (cm), respectively,  $\alpha$  the reactor parameter related to the geometry and transport properties (in a typical case,  $\alpha=1$ ), and  $k_{\rm app}$  the apparent kinetic parameter (1/s) (activity). <sup>2</sup>

The details of the models and apparent parameters for all three cases are given in Table 1. An analysis of more complicated pseudo-linear mechanisms that involve a sequence of irreversible steps indicates that the same relationship as (5) can be obtained. Details will be published in the future.

## 5. Extreme cases

Using Eq. (5), two extreme cases can be described as below

Case I: TAP "one-zone" reactor. In this case, there are no inert zones and the length of the whole reactor is equal to the length of catalyst zone. The parameter  $\alpha = 0$ , and general equation (5) can be simplified as

$$1 - X = \frac{1}{\cosh(\Psi)} \tag{6}$$

For irreversible adsorption/reaction, this is a well-known result [1].

Case II: TAP "thin-zone" reactor. In this case, the length of the catalyst zone is much smaller than the lengths of the inert zones and the length of the reactor.

<sup>&</sup>lt;sup>2</sup> In the irreversible adsorption case, for a three-zone TAP reactor with non-porous particles, Eq. (5) was previously published in Phanawadee's thesis [4] and, independently, by Dewaele and Froment [5] in dimensional form.

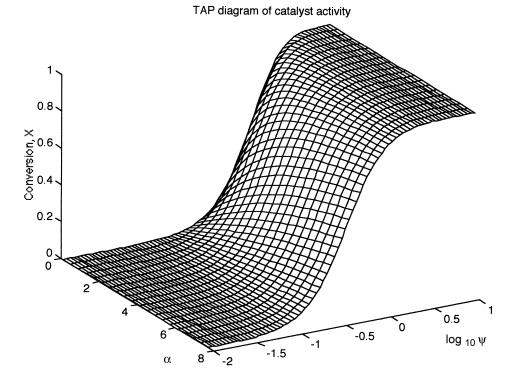



Fig. 1. TAP diagram of catalyst activity.

The hyperbolic function in general equation (5) can be simplified using the assumption that  $l_{\text{cat}}$  is very small as

$$1 - X = \frac{1}{1 + \varepsilon (l_3 l_{\text{cat}}/D_{g,\text{in}}) k_{\text{app}}}$$
 (7)

The TAP thin-zone reactor has been described elsewhere in detail [3]. Eq. (7) was analyzed and compared with the well-known equation for a CSTR.

# 6. TAP diagram of catalyst activity

Fig. 1 presents a graphical representation of general equation (5) to illustrate how it can be used to describe different TAP data. Using this diagram, the value of the parameter  $\psi$  can be obtained for a given reactor parameter,  $\alpha$ , and an experimentally measured conversion. The apparent kinetic parameter,  $k_{\rm app}$ , can be calculated using corresponding expressions for both porous and non-porous pellets.

## 7. Conclusions

A three-zone TAP reactor has been analyzed, and a general expression for primary catalyst characterization using TAP response data has been obtained. In this expression the zeroth moment/conversion is a function of only two effective parameters (reaction-diffusion parameter,  $\psi$ , and geometry-diffusion parameter,  $\alpha$ ) of reactor—catalyst system. This general expression was shown to be applicable to characterization of three different catalyst systems, i.e. porous and non-porous catalysts, and one- and two-step catalytic mechanisms. For these cases, expressions for effective parameters, particularly for apparent constant as a function of different model parameters, were presented.

Using the general expression or corresponding nomogram, the apparent kinetic parameter and corresponding model parameters can be obtained.

The expressions for TAP one- and thin-zone reactors have been shown to be particular cases of the general expression.

## Acknowledgements

The authors gratefully acknowledge the financial support of Shell Research and Mitsubishi Chemical Company, and Kasetsart University Research and Development Institute and Dr. J.K. Yoda for many fruitful discussions.

# Appendix A

The TAP model for an irreversible two-step reaction is given by the following equations:

$$\varepsilon \frac{\partial C_{g}}{\partial t} = D_{g,cat} \frac{\partial^{2} C_{g}}{\partial x^{2}} - k_{ads} C_{g} + k_{des} \theta,$$

$$\frac{\partial \theta}{\partial t} = k_{ads} C_{g} - (k_{des} + k_{reac}) \theta$$
(in the catalyst zone) (A.1)

$$\varepsilon \frac{\partial C_{g}}{\partial t} = D_{g,in} \frac{\partial^{2} C_{g}}{\partial x^{2}} \quad \text{(in the inert zones)}, \tag{A.2}$$

where  $\theta$  is the transformed surface concentration (mol/cm<sup>3</sup>),  $k_{\rm ads}$  the apparent first-step adsorption constant (1/s),  $k_{\rm des}$  the apparent first-step desorption constant (1/s) and  $k_{\rm reac}$  the apparent second-step reaction constant (1/s).

Initial condition for surface concentration

$$t = 0 \to \theta = 0 \tag{A.3}$$

## Appendix B

The TAP model for the analysis of a catalytic process in porous particles takes into account the following two kinds of diffusion:

- 1. interparticle (Knudsen diffusion in the interparticle space);
- 2. intraparticle (diffusion in the particle pores).

The model for irreversible adsorption or reaction is given by the following equations:

$$\varepsilon \frac{\partial C_{g}}{\partial t} = D_{g,in} \frac{\partial^{2} C_{g}}{\partial x^{2}} \quad \text{(in inert zones)}$$
 (B.1)

$$\begin{split} \varepsilon \frac{\partial C_{\rm g}}{\partial t} &= D_{\rm g,cat} \frac{\partial^2 C_{\rm g}}{\partial x^2} - J, \\ \frac{\partial C_{\rm p}}{\partial t} &= D_{\rm p} \nabla^2 C_{\rm p} - k_{\rm ads} C_{\rm p} \quad \text{(in catalyst zone)} \quad \text{(B.2)} \end{split}$$

$$J = \sigma (1 - \varepsilon) D_{\rm p} \nabla C_{\rm p}|_{\text{at the particle surface}}$$
 (B.3)

where  $C_p$  is the gaseous concentration in the porous space (mol/cm<sup>3</sup>), J the gaseous flow from interparticle space to the pores per unit of reactor volume (mol/cm<sup>3</sup> s),  $D_p$  the effective Knudsen diffusivity of gases in the porous space (cm<sup>2</sup>/s),  $k_{\rm ads}$  the rate constant of the first step and  $\sigma$  the surface area of pores on the catalyst surface per unit volume of catalyst (cm<sup>-1</sup>).

Initial condition: 
$$t = 0 \rightarrow C_p = 0$$
 (B.4)

Boundary conditions:

$$C_{\rm p}$$
<sub>at the particle surface</sub> =  $C_{\rm g}$ ,  
 $\nabla C_{\rm p}$ <sub>at the end of the pore</sub> = 0. (B.5)

#### References

- J.T. Gleaves, G.S. Yablonskii, P. Phanawadee, Y. Schuurman, TAP-2: an interrogative kinetics approach, Appl. Catal. A 160 (1997) 55
- [2] G.S. Yablonskii, S.O. Shekhtman, S. Chen, J.T. Gleaves, Moment-based analysis of transient response catalytic studies (TAP experiment), Ind. Eng. Chem. Res. 37 (1998) 2193.
- [3] S.O. Shekhtman, G.S. Yablonskii, J.T. Gleaves, S. Chen, Thin-zone TAP-reactor. Theory and application, Chem. Eng. Sci. 54 (1999) 4371.
- [4] P. Phanawadee, Theory and methodology of TAP Knudsen pulse response experiments, Ph.D. Dissertation, Washington University, St. Louis, MO, 1997.
- [5] O. Dewaele, G. Froment, TAP-study of the mechanism and kinetics of the adsorption and combustion of the CH<sub>4</sub> on Ni/Al<sub>2</sub>O<sub>3</sub> and NiO/Al<sub>2</sub>O<sub>3</sub>, J. Catal. 184 (1999) 499.